Стандартные и быстрые методы заряда аккумуляторов мобильных устройств

Бурное развитие аппаратуры сотовой связи и других мобильных гаджетов привело к многообразию источников питания и их «носимых» вариантов – аккумуляторов и, соответственно, зарядных устройств. В статье я попытаюсь обобщить данные о различных автономных источниках тока и методах их эксплуатации, в первую очередь заряда. Так как обзор составлен, прежде всего, для пользователей современной электроники, а не для специалистов, некоторые моменты будут освещены несколько упрощенно.

В качестве источников питания в современных мобильных устройствах используются, как правило, аккумуляторы. В первых сотовых телефонах широко применялись щелочные аккумуляторы: никель-кадмиевые (Ni-Cd) и никель-металл-гидридные (Ni-MH). Их номинальное напряжение относительно низкое (1.2 В). Поэтому для достижения рабочих 3.6 - 6 вольт они собирались в батареи, состоящие из 3-5 аккумуляторов. В настоящее время такие источники представлены чаще в виде цилиндрических герметичных аккумуляторов типоразмера АА или ААА для питания радиотелефонов, фотоаппаратов, медицинских устройств.

Обладая рядом положительных качеств, они, естественно, имеют и недостатки. В первую очередь, это довольно большой вес, существенный саморазряд, «эффект памяти» - снижение ёмкости при повторяющемся неполном (более 30%) разряде. Ёмкость (С) аккумулятора показывает, за какое время он разрядится номинальным током от полностью заряженного состояния до полного разряда. Измеряется в ампер-часах (Ач) или миллиампер-часах (мАч, на импортных аккумуляторах обозначение – mAh).

C=Iном*t

Так, например, если свежезаряженная батарея будет разряжаться током 200 мА до полного разряда в течение 5 часов, то ее емкость составит 1000 мАч. У первых «мобильников» наиболее «ходовая» ёмкость батарей была 600 - 900 мАч. Впрочем, электронная начинка телефонов была не такой прожорливой, поэтому время их работы от заряда до заряда составляло несколько суток.

Стандартным для аккумуляторов этого типа является заряд током 0.1С в течение 14-16 часов (медленный заряд). При этом контролируется только время заряда, которое может быть увеличено без ущерба для аккумулятора.

Немного (до 6-7 часов) убыстрить заряд, контролируя только время, для большинства таких источников можно, увеличив ток заряда до 0.2С. Но чаще применяется быстрый заряд током 0.3С - 0.5С в течение 2.5 - 3.5 часов. При этом настоятельно рекомендуется контролировать ток заряда, напряжение аккумулятора (а вернее, его падение в конце заряда, так называемое «-ΔU») и температуру, так как она значительно увеличивается, особенно в конце заряда. Как правило, за этими параметрами следит автоматическое («интеллектуальное») зарядное устройство с применением специализированных микросхем. Для дополнительной безопасности в сами батареи встраиваются термопредохранители.

Со временем этот тип вторичных источников питания стал вытесняться литий-ионными (Li-Ion) и литий-полимерными аккумуляторами. У них значительно меньший саморазряд, большая удельная ёмкость, а соответственно, и меньший вес, практически полностью отсутствует «эффект памяти». Поэтому они заслуженно используются в современных девайсах, в частности, в смартфонах (правда, это не говорит об отсутствии недостатков, присущих этому типу источников питания). Номинальное напряжение таких аккумуляторов иное, 3.6 - 3.7 В, как и методы заряда. Наиболее распространен следующий стандартный алгоритм: первый этап – заряд стабильным током величиной около 0.5 - 1С до напряжения 4.2 В. После достижения этого значения начинается второй этап – постоянным напряжением, пока ток не уменьшится до величины 3-5% от первоначального значения. В принципе, второй этап можно исключить, но тогда аккумулятор будет заряжен на 70-80% от максимальной величины.

В любом случае основной постулат для Li-Ion и Li-Po аккумуляторов – это заряд ограниченным током до напряжения не выше 4.2 В. Литиевые аккумуляторы не терпят перезаряда, и максимальный уровень заряда на них не должен превышать этот порог. Точность отслеживания этого напряжения высока – не хуже 0.05 В. Несоблюдение этого условия чревато нагревом, «раздутием» аккумулятора и разгерметизацией. Поэтому внутри аккумуляторных сборок для обеспечения безопасной эксплуатации находятся контроллеры, отключающие аккумулятор в случае превышения напряжения во время заряда, а также понижения его до минимальной величины при глубоком разряде. В зависимости от рекомендаций производителя (в первую очередь промышленных аккумуляторов и военного назначения) допустимое напряжение может быть уменьшено до 4.1 - 4.15 В.

В некоторых зарядных устройствах ток максимальным становится не сразу, а постепенно нарастает до максимума за несколько минут – используется плавный пуск («софт-старт»). Необходимо также уменьшить ток при заряде сильно разряженного (до уровня ниже 2.8-3.0 В) аккумулятора. Например, Siemens для своих батарей предлагает следующий алгоритм: первый этап – заряд током 20 мА до напряжения 2.8 В, затем 50 мА до 3.2 В, третий этап – нормальный заряд. Несоблюдение этого условия может привести как минимум к выходу аккумулятора из строя. Необходимо отметить, что глубокий разряд отрицательно сказывается на «жизнеспособности» литий-ионных аккумуляторов, и, к слову, не все зарядные устройства обеспечивают зарядку при напряжении на них меньше 2.5 - 2.8 В.

Несложно понять, что время при стандартном заряде составляет не менее 2 - 3 часов. Казалось бы, уменьшить это время можно, увеличив ток заряда. Но на деле не все так просто. Напряжение зарядного устройства (сетевого адаптера) 5 В выбрано не случайно – это напряжение порта USB, через который можно также производить заряд. Правда, первоначально по спецификации USB 2.0 его выходной ток был ограничен уровнем 500 мА, а порта USB – 3.0 - 900 мА. Напомню, что кабель USB (до 2.0 включительно) состоит из 4 медных проводников — 2 проводника питания и 2 проводника данных D+ и D- и заземленной металлической оплётки (экрана). Соответственно, разъем также имеет одноименные с кабелем контакты. В спецификации USB 3.0 разъёмы и кабели совместимы с USB 2.0, причём для идентификации разъёмы USB 3.0 принято изготавливать из пластика синего цвета. При внимательном рассмотрении видно, что разъём USB 3.0 имеет дополнительные контакты, которые не задействуются при соединении с кабелем USB 2.0 .

Источник: jaswindows.ru

В «правильно» работающих устройствах в случае превышения тока потребления порт USB снижает напряжение или совсем его отключает (встроенная защита порта от перегрузки).

Систематизировать положение дел при питании от разъема USB позволило появление спецификации USB Battery Charging. Первая версия вышла в 2007 году. Она допускала наличие специально обозначенных разъемов USB-A с максимальным током до 1,5 А.

Также разрешались подобные разъемы с неподключенными линиями данных на зарядных устройствах. Такие устройства распознавались по замкнутым между собой контактам D+ и D-, и их разъемы допускали ток до 5 А.

После определенных доработок был принят новый стандарт – USB Power Delivery (USB PD), который предусматривал возможность повышать напряжение с целью передать через соединительный кабель бОльшую мощность. Чем была вызвана необходимость увеличения напряжения?

Как видно из ТХ, в смартфонах все чаще используются аккумуляторы емкостью более 3000 мАч. Это означает, что внешнее пятивольтовое зарядное устройство должно выдавать соизмеримые токи. А в ускоренном методе эти токи могут быть значительными. Сделать такую зарядку на современной элементной базе не проблема, а вот ощутимых потерь в соединительном кабеле при увеличенном токе не избежать. По закону Ома, они будут больше при бОльшем токе. Сам разъем USB может тоже не «потянуть» такой ток без заметного нагрева контактов (читай – потерь на них). Поэтому, не увеличивая токи до «запредельных» величин, передать увеличенную мощность можно путем повышения напряжения. Обратимся к формуле, определяющей мощность: P=U*I, где U и I – соответственно напряжение и ток. При стандартной пятивольтовой зарядке мощность, например, 20 Вт можно получить при токе 4 А, а увеличив напряжение до 12 В – уже при токе чуть более 1.6 А. К тому же, учитывая внутреннее сопротивление аккумулятора, значительно увеличить ток заряда от пятивольтового адаптера не удастся из-за малой разницы между напряжением зарядного устройства и напряжением аккумулятора.

Не вдаваясь в технические подробности, скажу, что USB PD первой ревизии (Rev.1) имеет несколько профилей электропитания и допускает увеличение напряжения (от стандартных 5В) до 12 или 20 В. При этом максимальная мощность через USB разъем возрастает до 100 Вт. В следующей ревизии – USB PD Rev.2 выбор максимальной мощности производится более гибко. Данная ревизия уже связана с USB 3.1 и новым разъемом USB Type-C.

Естественно, что зарядное устройство и потребитель тока (смартфон или другой гаджет) должны провести диалог и определить возможность передачи или приема такой мощности. Часто производители электроники сами вырабатывают методы такого определения. Как правило, наличие конкретного сопротивления или напряжения между шинами D+ и D-, иногда другие варианты переключают зарядное устройство в режим быстрого заряда. При этом, используя стандартный USB, смартфон заряжается пониженным током.

На данный момент, кроме USB PD, распространены и другие, отличные от этого стандарта технологии быстрого заряда.

Компания Qualcomm предложила технологию Quick Сharge 1.0. Она позволяет проводить заряд с выходными характеристиками зарядного устройства 5V/2A (мощность 10W). Усовершенствованная Quick Сharge 2.0 предполагает заряжать токами до 3 ампер и напряжением 5/9/12 вольт.

Очередная модификация технологии быстрого заряда – Quick Charge 3.0. Ее особенность в интеллектуальном подборе оптимального напряжения заряда (INOV). Напряжение подбирается индивидуально от 3,6 до 20 вольт для каждого устройства и промежутка процесса зарядки. Минимальный шаг изменения напряжения – 200 мВ. Разработчик Qualcomm обещает, что новая версия «быстрой зарядки» будет на 38% эффективнее, чем Quick Сharge 2.0. Согласно пресс-релизу Qualcomm, технология Quick Charge 4 позволит заряжать еще быстрее и устранит несовместимость с USB PD.

Стараются не отставать и MediaTek. По их заявлению, используя технологию MediaTek Pump Express 3.0, «аккумулятор современного устройства можно зарядить от 0 до 70% всего за 20 минут».

Но электронная начинка смартфона должна быть приспособлена для таких вариантов быстрого заряда. Помимо этого, аксессуары (кабель, зарядные устройства) должны иметь полную совместимость. Необходимо отметить, что производители все чаще используют в своих разработках, в частности, в быстрых зарядных устройствах, разъем USB Type-C, который поддерживает USB 3.1 с максимальной скоростью 10 Гбит и более высокое напряжение 20 В и ток 5А, соответственно, мощность 100 Вт. Он легче подключается к устройству благодаря своей симметричности. Но некоторые нестандартные кабели и переходники со штекером Type-C и гнездом стандартов A или micro-B на другом конце препятствуют корректному определению допустимой мощности, что может повредить источники питания или USB-порты компьютера. К тому же корпорация Google в документе Compatibility Definition Document (CDD) Android 7.0 Nougat пишет:

«Устройствам с разъемом USB-C НАСТОЯТЕЛЬНО РЕКОМЕНДУЕТСЯ не поддерживать проприетарные способы зарядки, которые используют напряжение, отличное от стандартных значений... поскольку это может привести к проблемам совместимости с зарядными устройствами или аксессуарами, которые поддерживают стандарт USB Power Delivery».

Похоже, Google предполагает, что USB PD станет стандартом быстрой зарядки для смартфонов с разъемом USB Type-C.

Естественно, из-за экономии времени быстрая зарядка привлекательна, но для меня остается открытым вопрос о долговечности аккумуляторов после такого форсированного заряда и его безопасность. Ряд пользователей замечают уменьшение емкости аккумуляторов, заряженных ускоренным методом. Однако у них немало оппонентов, которые не отмечают ухудшения параметров аккумуляторов, такого же мнения придерживаются и изготовители мобильных устройств. Целесообразным, видимо, будет использовать возможность включения или отключения функции быстрого заряда на усмотрение пользователя.

Андрей Белых

Опубликовано — 07 марта 2017 г.

Поделиться

Мы в социальных сетях:

Новости:

13.05.2021 MediaTek представила предфлагманский чипсет Dimensity 900 5G

13.05.2021 Cайты, имеющие 500 тысяч пользователей из России, должны будут открыть местные филиалы

13.05.2021 Amazon представила обновления своих умных дисплеев Echo Show 8 и Echo Show 5

13.05.2021 МТС ввел удобный тариф без абонентской платы - «МТС Нон-стоп»

13.05.2021 Zenfone 8 Flip – вариант Galaxy A80 от ASUS

13.05.2021 Поставки мониторов в этом году достигнут 150 млн

13.05.2021 Состоялся анонс модной версии «умных» часов Samsung Galaxy Watch3 TOUS

13.05.2021 Tele2 выходит на Яндекс.Маркет

13.05.2021 OPPO представила чехол для смартфона, позволяющий управлять устройствами умного дома

13.05.2021 TWS-наушники с активным шумоподавлением Xiaomi FlipBuds Pro

13.05.2021 В России до конца следующего года появится госстандарт для искусственного интеллекта

13.05.2021 ASUS Zenfone 8 – компактный флагман на Snapdragon 888

12.05.2021 Компания Genesis представила внешность своего первого универсала G70 Shooting Brake

12.05.2021 В России разработан высокоточный гироскоп для беспилотников

12.05.2021 В Россию привезли новую версию смарт-часов HUAWEI WATCH FIT, Elegant Edition

12.05.2021 Раскрыты ключевые особенности смартфона POCO M3 Pro 5G

12.05.2021 Honor 50: стали известны дизайн и другие подробности о смартфоне

12.05.2021 Чипсет Exynos 2200 от Samsung будет устанавливаться и в смартфоны, и в ноутбуки

12.05.2021 МТС начала подключать многоквартирные дома к интернету вещей

12.05.2021 iPhone 13 будет толще и получит более крупные камеры по сравнению с iPhone 12

12.05.2021 Xiaomi договорилась с властями США об исключении из чёрного списка

12.05.2021 Xiaomi выпустила обновлённую версию умного пульта Agara Cube T1 Pro

Hit

12.05.2021 Игровые ноутбуки с NVIDIA GeForce RTX 3050 Ti уже в России!

12.05.2021 Индийский завод Foxconn сократил производство в два раза

12.05.2021 Lenovo отказалась от очного участия в предстоящем в июне Mobile World Congress

Подписка
 
© Mobile-review.com, 2002-2021. All rights reserved.